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ABSTRACT

Fluctuation properties of squeezed photon beams gener-
ated in three wave mixing processes such as second har-

monic generation, degenerate and nondegenerate para-

metric oscillations, and homodyne detection are studied

in terms of photon sequences recorded by a photode-
tector.

Photon number fluctuations and photon number

correlations are fundamental properties of a light beam.

These properties are different for different light sources

and can be used to characterize photon beams. In this
short communication we discuss our work on statisti-

cal properties of squeezed photon beams generated in

three wave interaction processes in terms of counting

and waiting time distributions. We summarize some of

the interesting results obtained for these systems. Pro-
cesses that we consider here include second harmonic

generation, and degenerate and nondegenemte paramet-
ric down conversion (DPO and NDPO). Squeezed state

of light have been realized in these systems experi-

menially (Ref.I). Homodyne statistics when squeezed

light produced by the DPO is mixed with coherent light
from a local oscillator ,are also discussed. A dynamical

model for these beams is used and photon sequences

recorded by a photodetector are calculated.

We use positive-P representation (Ref.2) to map

quantum mechanical cqualions of motion for the anni-

hilation and creation operators onto a set of C-number

stochastic equations for the complex field amplitudes.

Using simple transformation of field variables it can

be shown that the field produced in these processes

can be described in terms of independent real Gaussian

stochastic processes (Ref.3-4).
We use a generating function technique to ob-

tain the statistics of the photons emitted by these light

sources. The generating function (;(s, t, T) for the pho-

ton statistics measured by a detector with a parameter

s is given by (Ref.5)

t +T-sq l(t')dt'
(;(s,t,T)= (e at ). (1)

Here 71 is detector efficiency and I(t) is photon flux

emitted by the source. Generating function (;(1, t, 7")

is simply the probability of detecting no photon in the
time interval t to t + T. In order to obtain generating

function we express l(t) in terms of the c-number field

variables. Statistical averaging is performed by mak-

ing Karhunen Lodvc expansion of the field variables in

terms of a set of orthogonal functions. Following the

method developed in our earlier investigations (Ref.3)

we derive an analytical expression for the generating

function (;(s, t, T) for the photon statistics. From this

generating function various statistical quantities such as

factorial moments, photon counting and waiting time
distributions can be obtained.

The photon counting distribution p(m, t, T) is

the probability of counting m photons in the time in-
terval t to t +T. It can be obtained from the generating

function by using the relationship

tXm,t,T)_ (-l)'" [ d''' , ]m! _G(s, t, T) (2)

The waiting time distribution w(t, T) is the probability

density for two successive photoelectrons to be sepa-

rated by the time interval 7" and it is given by

w(t,T=t'-t)=-(_ll(t)) -1 a_ (;(1,t,t'-t) (3)
dtdt'

In the stationary regime these quantities are indepen-

dent of initial time t. Here we only summarize photon

statistics only in the steady slate regime. The tield from
the DPO can be expressed in terms of two independent

Gaussian random variables with mean zero and differ-

ent variances

11,,-_1,s,_c-_,r (4)
< .,(t)u_(t + T) >= 3 ,_-

Here K is the mode coupling constant, and _ is the

dimensionless amplitude of the pump beam incident on

the cavity. The decay constants )_ and )_2 are given

by
,_ =('r-t,_1), ;_2= ('_+ I,_1). (5)

Here (1/27) is the cavity lifetime. Below threshold

,_t and )_2 are always positive. Using the properties

of field variables ul and u2 we obtain the generating

function for the DPO as (Ref.3)

G(s, T) = Q1 (s, T)Q:,(s, 7'), (6)
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where

cA,T ]tQi(s,t,T)= [cosh(ziT)+ fi(t)sinh(ziT)] '

with

(7)

L(t) = _ + , (8)

and
z 2 = A2 + 2s,17_ _,

(9)
z_ = A_ - 2s,l'}_ e.

Mean photon number inside the cavity is given by

(10)1( ]Ke] 2 )

For the DPO g is equal to half. Once the generating

function is known photon counting and waiting time

distributions are obtained from Eqs. (2) and (3). For

small mean photon number and short counting time
p(m, T) decreases monotonically.
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Figure la. Photon counting probability distribution for

the DPO for R = 095, unit efficiency, and counting

time interval 27T = 20.

For long counting times p(m,T) shows sharp
even-odd oscillations implying that the probability of

detecting odd number of photons is much smaller than

the probability of detecting even number of photons.

As the mean photon number fi is increased these even-

odd oscillations become smaller. Figure (la) shows

p(m, T) for R = _ c/_ = 0.95 near threshold corre-

sponding to fi = 463. These curves are meaningful

only for integer values of In. We see that near thresh-

old even-odd oscillations become less pronounced and

pOn, T) develops a long tail. We have also studied
photon statistics for the DPO in the transient regime,

that is, during its evolution from vacuum stale to the

steady state (Ref.4). For small transient time even-odd

oscillations in photon counting distributions are even

sharper than the even-odd oscillations in the stationary

regime.

With the degenerate modes of a parametric os-
cillator, nondegenerate modes are also present. We

consider the nondegenerate modes of parametric os-

cillator for which two nondegenerate photons have the

same frequencies. These fields can be expressed in
terms of four real random Gaussian variables. Here

we discuss two cases, one in which amplitudes of the

two nondegenerate modes are homodyned and second
in which intensities of the two modes are added to-

gether. For a given pump strength the NDPO the mean

photon number is much smaller than the mean photon

number for the DPO. Mathematical expression for the

generating function for the first case is similar to the
generating function for the DPO. Thus p(m, T) for the
NDPO also shows even-odd oscillations. However, for

the same pump strength, even-odd oscillations in the

NDPO are sharper then the oscillations for the DPO.

They are centered towards smaller values of m. The

difference between the DPO and the NDPO lies mainly

in the value of the mean photon number.
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Figure lb. Photon counting probability distribution for

the NDPO for R = 0.95, efficiency r1= 1, and counting
time interval 277'= 20.

The second case that we consider is when inten-

sities of the two modes are added together. In this case

the power g appearing in Eq. (7) is one (Ref.6). In this

case the expression for Q_ (s, 7') is similar to the gener-

ating function for thermal light (Ref.5). The counting
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distributionfor NDPO, however, is very different from

that for the thermal light. It shows even-odd oscilla-
tions as a function of m whereas such oscillations are

not seen for thermal light, Figure (lb) shows even-
odd oscillations in p(ra, t) for R = _ e/7 = .95 for the

second case.

Next we discuss photon statistics of the funda-

mental beam from an intracavity second harmonic gen-

eration (SHG). Field for this system can be expressed
in terms of two real Gaussian random variables and a

coherent component (Ref.7). These results are obtained

by linearizing the field amplitude equations around the

deterministic steady state values. The generating func-
tion for the SHG can be written as (Ref.6)

G(s, T) = QI(s,T)Q2(s,T)c -I(''T) • (10)

Here

2

f(s, T) = -2sqfinoT [ z_ (2

2sqhv(zl) 2 ]

-
z_(l+ _, } (2*A,T)(I+ _, ] J

(11)

with

v(zl) = 1 + _ tanh(zlT/2) ] "
(12)

Here Ql(s, T) and Q2(s, T) are given by equation (7)

with l = 0.5 and

AI = (1 + 3fi), A2 = (1 + fi), (12)

For the SHG Zl and z2 are given by

(13)

Here fi and no are the average and threshold pho-

ton numbers, respectively. From this generating func-
tion various statistical quantities of interest can be cal-

culated. Photon sequences in the SHG can be an-

tibunched. Although the antibunching effect is very

small riding on an intense coherent background it is

clearly reflected in the behavior of the waiting time
distribution for the SHG.

Using similar techniques we also obtain the gen-

erating function when l!ght from the DPO is homo-

dyned with coherent light from a local oscillator. De-
pending upon the relative phase between coherent light
from the local oscillator and squeezed light from the

DPO we can see sub-Poissonian or super-Poissonian

statistics for the homodyned photon beam. Figure (2)

shows waiting time distribution when the relative phase
is 0 ° and 90 °. We see bunched light when coherent

component is added to the unsqueezed component and
antibunched light when coherent component is added

to the squeezed component.
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Figure 2. Waiting time distribution for DPO mean pho-
ton number h = 0.2 and local oscillator mean photon

number no = 2. Dashed curve is for coherent light
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